

1

2

3

4 **Development and Application of Decontamination Methods for the Re-Use of Laboratory Grade**
5 **Plastic Pipette Tips**

6

7 Sang Hyuk Lee^{1, 2, 3}, William Kastor^{2, 3}, Xiao Fu^{2, 3}, Vikas Soni⁴, Michael Keidar⁴, Marc
8 Donohue¹, Steve Wood², and Enusha Karunasena*²

9

10 ¹ Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns
11 Hopkins University, Baltimore, MD

12 ² Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering
13 Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration
14 (FDA), Silver Spring, MD

15 ³ Oak Ridge Institute for Science and Education, Office of Science, US Department of Energy,
16 Oak Ridge, TN

17 ⁴ Department of Mechanical and Aerospace Engineering, School of Engineering and Applied
18 Science, George Washington University, Washington, DC

20

21 *Corresponding Author: enusha.karunasena@fda.hhs.gov;

22 enusha.karunasena@gmail.com

23

24

25

26

27

28

29

30

31 **Abstract**

32 During the SARS-CoV-2 pandemic, a need for methods to decontaminate and reuse personal
33 protective equipment (PPE) and medical plastics became a priority. In this investigation we
34 aimed to develop a contamination evaluation protocol for laboratory pipette tips, after
35 decontamination. Decontamination methods tested in this study included cleaning with a
36 common laboratory detergent (2.5% Alconox® solution followed with steam decontamination),
37 exposure of ozone vapor at 250 and 14400 PPM * minute, and exposure to cold atmospheric
38 plasma (CAP). All tips (control and experimental groups) were introduced to the methods
39 described, while tips exposed to DNA extracts of *Aeromonas hydrophila* (ATCC-23211) were
40 assessed for experimental groups. Decontamination was determined by turnover ratio and log
41 reduction in detectable genomic material on the contaminated products using real-time
42 quantitative PCR (qPCR) assay.

43 Our results showed, cleaning tips with lab detergents along with steam decontamination
44 removed genetic material, resulting in the highest log reduction, compared with ozone or CAP
45 treatments. Detergent/washing methods showed the highest turnover ratio (95.9 %) and log
46 reduction (5.943). However, the excessive residue (post- cleaning) on the plastic, within inner
47 filters, and tip boxes suggested that washing with lab detergents was not favorable for reuse.
48 Ozone vapor at 14400 PPM * minutes showed the second highest turnover ratio (98.4 %) and log
49 reduction (4.511). CAP exposure with tips inverted (the tip end exposed closer to the plasma
50 flame) for 1 minute showed a turnover ratio of (68.3 %) and log reduction (4.002). Relatively,
51 lower turnover ratio and log reduction of CAP could be attributed to development/optimization
52 of treatment conditions, including increases in exposure time and relative to tip positioning.

53

54 **Introduction**

55 The recent pandemic exhausted medical plastic supply-chains. For these reasons,
56 decontamination methods were proposed to mitigate PPE shortage, tested methods included
57 ultraviolet light [1-3], methylene blue [4], and hydrogen peroxide [3, 5, 6] vapor. In these
58 experiments we compared the efficacies of streamlining methods, including washing pipette tips
59 with laboratory detergents followed with steam decontamination, exposure to ozone vapor and
60 cold atmospheric plasma. The aims of this study were to identify nondestructive, efficient, and
61 effective decontamination methods for removing genetic material from pipette tips.

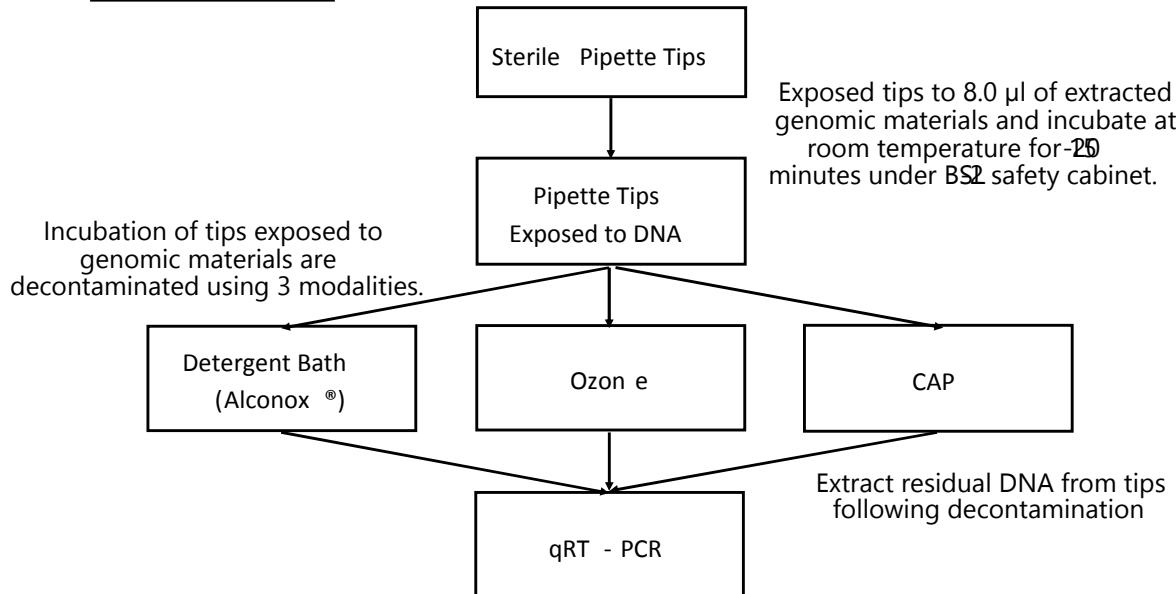
62 **Decontamination Modality One:** Laboratory cleaning detergents are commonly used for
63 glassware and plastics. We tested the use of Alconox®, which contains sodium tripolyphosphate
64 as water softener, sodium alkylbenzene sulfonate as a foaming agent, and tetrasodium
65 pyrophosphate as stain remover. A study by Luijt et al. in 2001, tested a comparable reagent
66 (liquinox) in combination with CIDEX® decontamination to evaluate the clearance of two RNA
67 viruses from twenty ethylene oxide sterilized 5F balloon catheters that were inoculated and
68 simulated through ‘use’ and ‘re-use’. Following qRT-PCR analysis and culture assays neither
69 liquinox nor CIDEX were able to fully re-clean catheters [7] and remove the viruses. In contrast,
70 an investigation conducted by Shields et al. used various cleaning solutions to evaluate the
71 recovery of *Cryptosporidium parvum* and *Cyclospora cayetanensis* oocytes from contaminated
72 food items. This investigation demonstrated increased oocyte recovery (97.2%) when using a
73 1.0% Alconox® solution [8]; Alconox® is a widely used laboratory cleaner, with 1% peroxide-
74 based bleach.

75 **Decontamination Modality Two:** ozone is a reactive allotrope of oxygen with a lone
76 unpaired electron (free radical) that dimerize with valence electrons on other molecules. Based
77 on the CDCs August 2003 “Guidelines for disinfection and sterilization in healthcare facilities”,
78 exposing atmospheric O₂ to ultraviolet (UV) radiation to activate ozone is approved in
79 decontamination for clinical settings, and by the US FDA. Yet, industrial ozone
80 decontamination is still an evolving technology with restrictive requirements [7], such as high
81 humidity. However, conditioned ozone decontamination inactivated airborne respiratory viruses
82 [8], on various [9] surfaces. In this study we evaluated the clearance of residual DNA on pipette
83 tips as a measure of ozone decontamination.

84 **Decontamination Modality Three:** CAP is a thermal non-equilibrium state between heavy
85 positive ions and electrons achieved [10, 11] through rapid atmospheric pressure discharge. A
86 previous study characterized CAP devices for reactive species [12] using optical emission
87 spectroscopy. CAP maintains temperatures of 25- 45°C and generate reactive oxygen and
88 nitrogen species (ROS/RNS) which exhibit both [10, 13] virucidal and bactericidal properties.
89 This study evaluated the efficacy of CAP decontamination and clearance of residual DNA on
90 plastic pipette tips.

91 This investigation compared the clearance efficacies of genetic material from pipette tips
92 commonly used for molecular assays, like polymerase chain reaction (PCR), relative to
93 decontamination methods tested (detergent and steam decontamination, ozone vapor, and CAP).
94 Although the operating parameters require optimization to environment, commonly used
95 laboratory and industrial applications were replicated [11, 12, 14, 15] to compare
96 decontamination modalities.

97 The biological ‘contaminant’ for this study were DNA extracts from *Aeromonas hydrophila*
98 (ATCC-23211). *Aeromonas hydrophila* is a gram-negative, opportunistic, facultative, anaerobic
99 bacilli that is widely used as a model organism due to its route of fecal-oral [16] transmission.
100 *Aeromonas sp.* infections have a broad range of clinical presentation including bacteremia,
101 hepatobiliary infection, pneumoniae, and skin /soft tissue infections, but most commonly
102 manifest in acute [16, 17] gastroenteritis. In this study, *A. hydrophila* was used as the model
103 organism due to its ubiquitous and pathological properties.


104 Materials and methods

105 This investigation used Biotix® Utip Filtered packed 10 μ L pipette tips (Biotix Inc, CA) as a
106 representative pipette tip. The volume of fluid tested was 8.0 μ L and for experimental conditions,
107 this included extracted DNA from *Aeromonas hydrophila* (ATCC-23211). After exposure to
108 genomic materials, the tips were re-racked in the pipette tip box and incubated for 15-20 minutes
109 at room temperature in a BSL-2 biosafety cabinet. Following this incubation period, tips were
110 exposed to a standardized decontamination protocol, relative to the modality tested. Post-
111 decontamination, tips were reused to harvest residual genetic material dispensed into 8 μ L of
112 sterile ultrapure DNase/RNase free water, nuclease free water was aspirated thrice from each tip
113 to maximize harvesting, (Thermo-Fisher Scientific, MA) -- samples were then tested for residual
114 genomic material using qRT - PCR.

115 qRT-PCR was used to pinpoint an acceptable range for threshold cycle (T_c) for sterile
116 (negative control) and DNA-contaminated (positive control) groups. Experimental groups were
117 treated with decontamination methods and evaluated for DNA, results were compared with T_c
118 from negative and positive controls. This extrapolation was useful for comparisons between

119 bacterial plate counts along with qRT– PCR T_c results, as T_c showed the number of doubling
120 cycles needed to amplify DNA copies to detectable range.

Protocol Outline

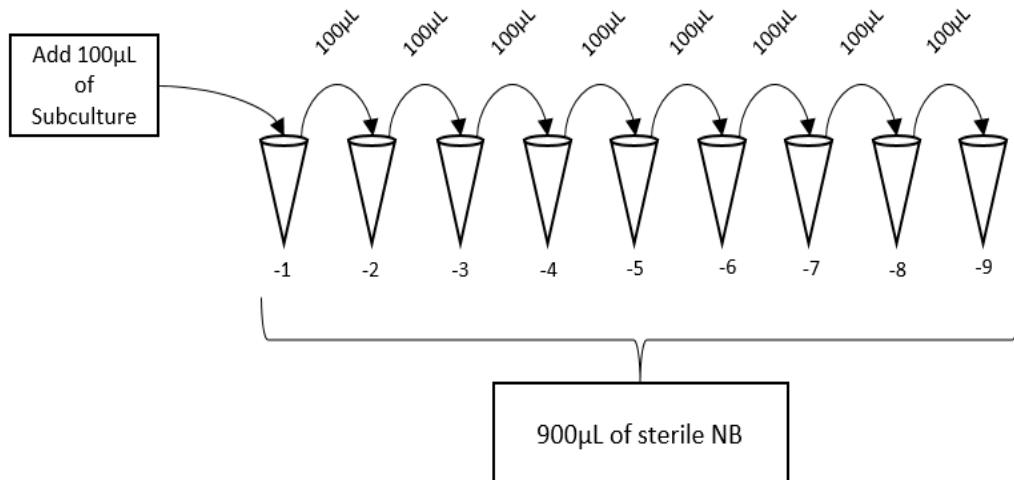
121

122 **Fig 1.** Experimental design of the investigation using three different decontamination modalities.

123 **Microbial Culture**

124 Inoculated cultures of *A. hydrophila* (ATCC-23211) were suspended in 0.5 mL of sterile
125 nutrient broth (NB; Thermo Fisher Scientific, MA). The suspension was aseptically transferred
126 to a 15 mL conical test tube containing 4.5 mL of sterile nutrient broth and allowed to incubate
127 overnight at 37 °C with shaking at 150 rotations per minute (rpm) (Southwest Science, NJ).

128 **Bacterial growth calibration curve**


129 A subculture was prepared in 100 mL of sterile NB in a 250 mL Erlenmeyer flask. One
130 hundred microliters of overnight culture were inoculated into the subculture flask and incubated

131 at 37°C with shaking at 150 rpm. Growth was measured spectrophotometrically, a cuvette with
132 1.0 mL of sterile NB was used as a blank for measuring optical density at 600 nm (OD₆₀₀) using
133 the GENESYS™ 10S UV-Vis Spectrophotometer (Thermo Fisher Scientific, MA). Samples of
134 the subculture were measured at 0, 1, 3, 5, 6, 7, 8, and 9 hours respectively, by aliquoting and
135 measuring OD₆₀₀ of 1.0 mL subcultures in cuvettes. To calculate the colony forming unit / mL
136 (CFU / mL), a cell viability assay was performed with serial dilutions in 1.5mL sterile conical
137 tubes (Eppendorf; Hamburg, Germany). Each dilution factor for the respective time points were
138 plated in triplicate on nutrient agar plates by adding 100 µL to the center of the plate and
139 aseptically dispersed using a sterile spreader. Inoculated plates were incubated, inverted, at 37°C
140 overnight. Colonies were counted using a Sphere Flash® Automated Colony Counter (Neutec
141 Group Inc, NY). A calibration curve was plotted as subculture incubation time to OD₆₀₀,
142 subculture incubation time to CFU/mL, and OD₆₀₀ to CFU/mL. The R² value ensured the linear
143 fit of OD₆₀₀ to CFU/mL.

144 **Table 1. Collection of plated dilution factors for time points**

Time (hr)	0	1	3	5	6	7	8	9
Dilution Factor (X ⁻¹)	3	1, 2, 3	3, 4, 5	5, 6, 7, 8, 9				

145 Calibration curve dilution factor plating scheme (32 dilution factors plated in total).

146

147 **Fig 2.** Serial dilution for *A. hydrophila*

148 **DNA extraction**

149 Using 100 mL of sterile NB, overnight culture was inoculated with a sterile inoculating loop.

150 Fifty milliliters of sterile NB subculture were inoculated with 100 μ L of the overnight culture

151 and incubated in a shaking incubator at 37°C, 150 rpm. The incubation was monitored until a

152 OD₆₀₀ reading of ~ 0.866 nm (~ 4.53x10⁸ CFU / mL). Aliquots of subcultures (1.0ml) were

153 inoculated into six, 1.5 mL sterile cryogenic tubes and centrifuged at 2000 rpm for 10 minutes.

154 The supernatant was decanted, minimizing disturbance to the pelleted cells. DNA was extracted

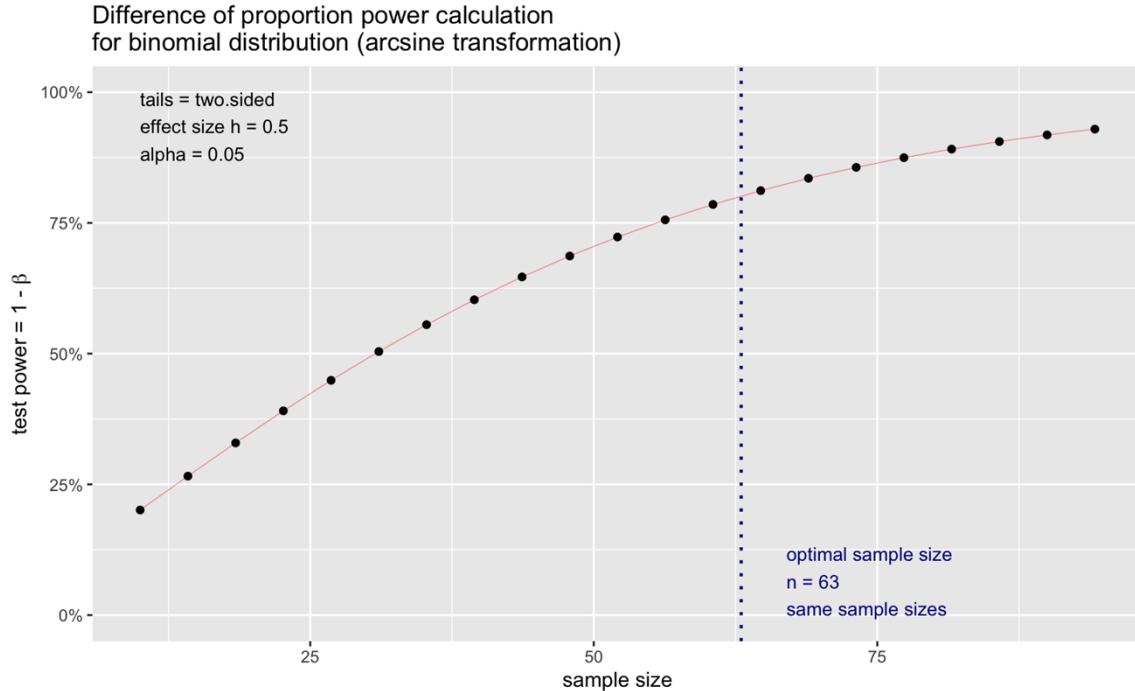
155 from the pelleted cells using the QIAgen DNeasy Blood and Tissue Kit protocol and QIAgen

156 Qiacube (QIAGEN, Germany). The DNA concentration of extracts were measured,

157 spectrophotometrically, using a NanoDrop™ One/One^C Microvolume UV-Vis

158 Spectrophotometer (Thermo-Fisher Scientific, MA).

159 **Inoculation and harvesting of pipette tips**

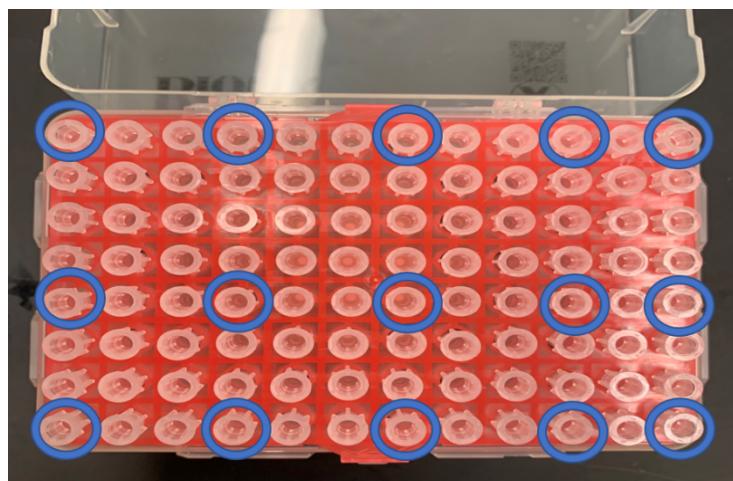

160 Genetic material was inoculated into all pipette tips by aspirating and dispensing 8.0 μ L of
161 the medium with extracted DNA. The inoculated tips were re-racked into the pipette box and
162 incubated at room temperature under a BSL-2 biosafety cabinet for 20 minutes. The inoculated
163 pipette tips were subjected to streamlined decontamination. Residual genetic material was
164 harvested from exposed pipette tips.

165 A power test was performed to determine a sample size ($N = 63$) that would indicate
166 significant difference between control and experimental groups. Assuming binary outcomes, p_0
167 of the control group had a “True” outcome, p_1 of the exposed group had a “True” outcome,
168 whether $p_0 = p_1$ was tested.

169 $p_0 = \text{number of “True outcome” in Control group} / \text{total number of samples tested in}$
170 Control group

171 $p_1 = \text{number of “True outcome” in Experimental group} / \text{total number of samples tested in}$
172 Experimental group

173 The two-sample test were performed, as the power test method for statistical significance. Two
174 separate power tests were conducted for—(1.) positive control vs exposed to DNA and (2.)
175 negative control vs exposed to DNA. The parameters for this power test included significance
176 levels (p values) of 0.05, 0.10, 0.15, power of 0.8, effect sizes (conventional effect size for the
177 two-sample test for proportions) of medium effect ($h = 0.5$) and was a two-sided test. The
178 resulting sample size was $n = 63$ (individual pipette tips tested). From five pipette tip boxes, at
179 least 13 pipette tips from each box were chosen as control or experimental groups. To
180 demonstrate the effect of decontamination, tips were sampled evenly from the conditioned box.

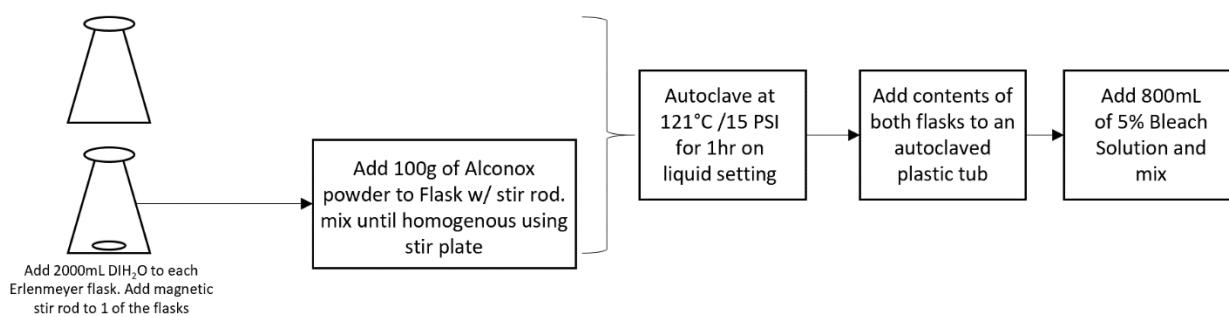


181

182 **Fig 3.** Power test for statistical validation- say what the x-axis describes and also the y-axis.

183 Eight microliters of DNase/RNase free water were added into each well of a sterile 96 well
184 plate. The conditioned tips (tips with DNA harvested from *A. hydrophila* were used to
185 respectively aspirate and dispense 8 μ L of DNase/RNase free water in each well thrice. Sterile
186 pipette tips (negative controls) were used to aspirate 3 μ L from each well.

187

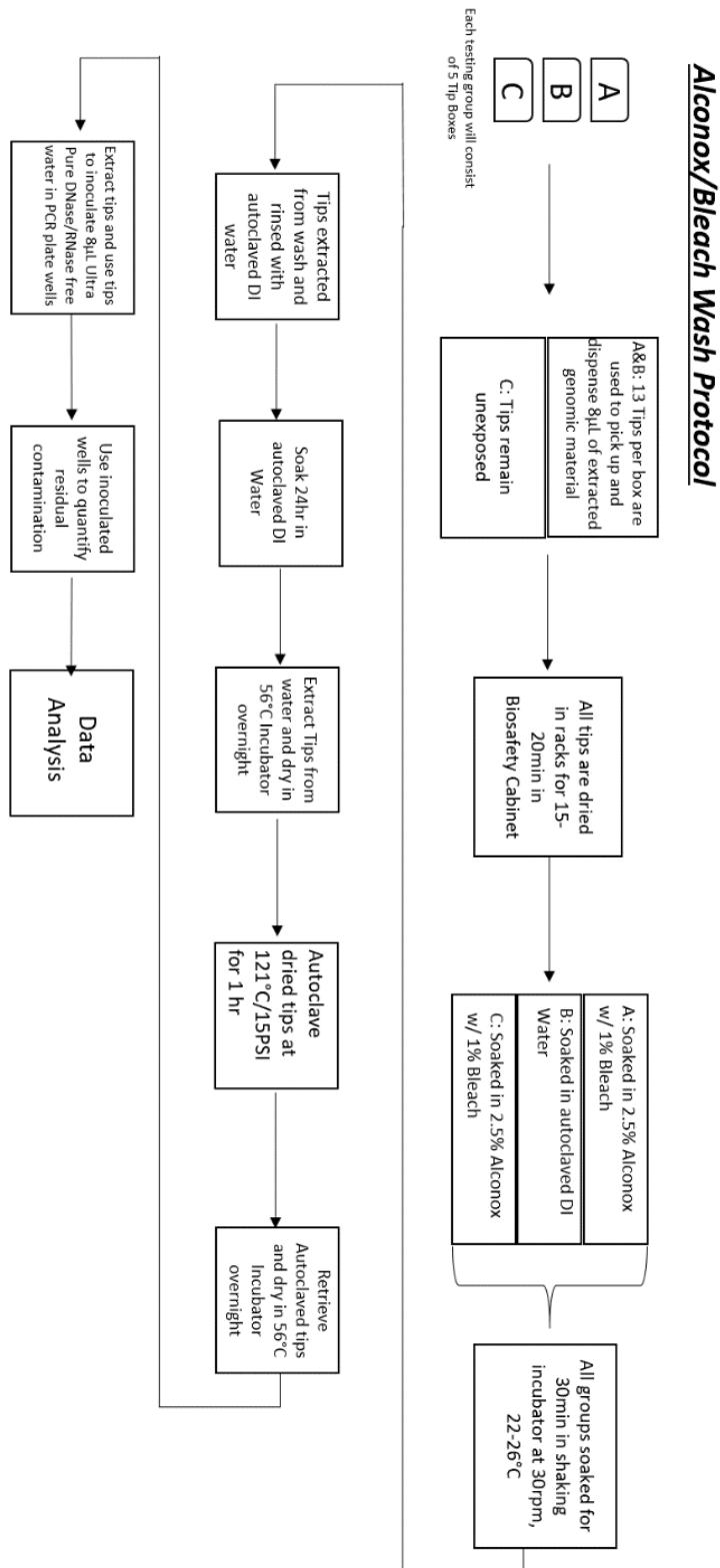

188

189 **Fig 4.** The diagram of pipette tip selection, samples circled in blue were selected for testing.

190 **Laboratory detergent preparation**

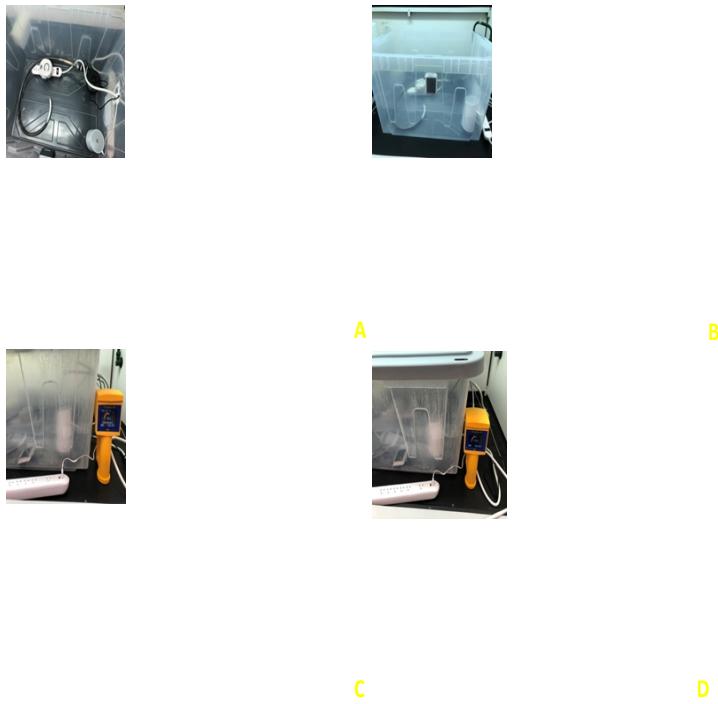
191 The detergent / bleach wash solution was prepared in two 6 L Erlenmeyer flasks filled with
192 2L of deionized water (DIH₂O), each. A magnetic stir rod was added to one of the two flasks
193 along with 100g of Alconox® powder (Alconox, NY). This flask was placed on a Nuova Stir
194 Plate (Thermo Fisher Scientific, MA) and mixed until fully dissolved. Both flasks were covered
195 with aluminum foil, placed in an autoclave safe bin with one inch of water and autoclaved at 121
196 °C, 15 psi for one hour (Modular Component Systems LLC, MD). Following this step,
197 autoclavable tubs was cleaned using Alconox® and DIH₂O and autoclaved on a gravity setting at
198 121 °C, 15 psi for 45 minutes. The contents of both flasks were added to sterilized/autoclaved
199 tubs and mixed gently. Lastly, 800 mL of 5 % bleach solution was added to the solution. The
200 final concentration of the wash solution was 2.5 % Alconox® and 1 % bleach.

Alconox/Bleach Wash Solution



201

202 **Fig 5.** Overview of detergent based wash solution.


203 **Wash protocol**

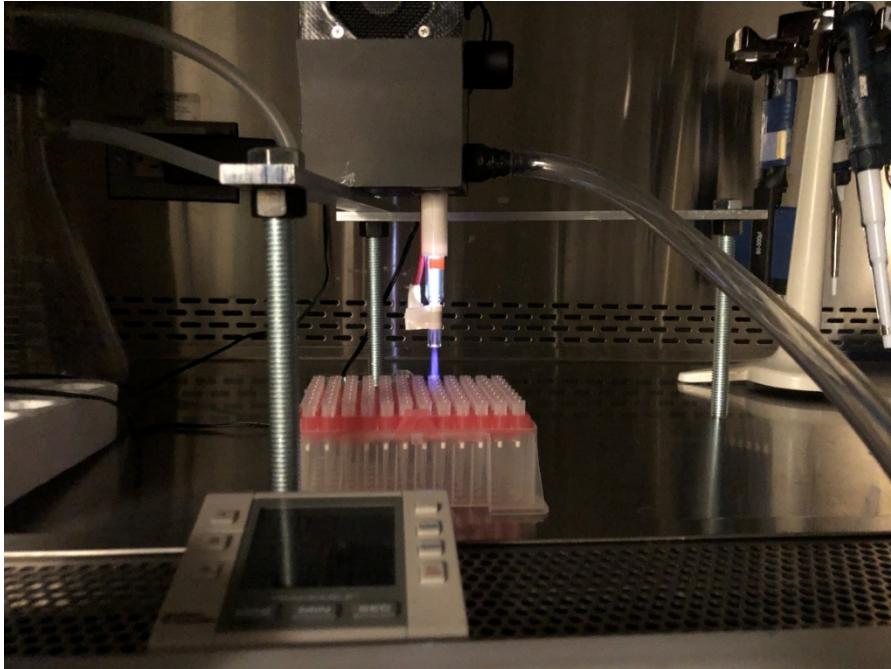
204 The workflow using the detergent /bleach wash solution is indicated in Fig 3. Five boxes of
205 sterile tips were allocated for each respective testing group. Groups A and B were exposed to the
206 DNA extracts, while Group C remained sterile/unexposed to genetic material and was placed
207 into the corresponding bath. Packaged sterile pipette tip boxes were cleaned with 70% ethanol
208 and placed in a BLS-2 biosafety cabinet. Post-inoculation, tips, tip racks, and their boxes were
209 separately placed into their corresponding wash solutions (A/B/C). The racks floated on top of
210 the liquid with the exposed portion of the tips fully submerged. The wash solutions containing
211 the tip racks were placed into a shaking incubator set at room temperature (25 °C) at 30 rpm and
212 soaked for 30 minutes. The tip racks and boxes were removed from wash solution and rinsed
213 with autoclaved DI H₂O. The pipette tip boxes were filled with 250 mL of autoclaved DIH₂O,
214 and the tip racks were placed back in the box such that the tip-ends were fully submerged in the
215 water for 24 hours. After the incubation, the boxes were dehydrated, and tip racks were re-racked
216 in their respective boxes. These boxes were placed into a 56 °C incubator for 24 hours with the
217 lid slightly ajar for ventilation. The pipette tip boxes were autoclaved for 1 hour at 121 °C, 15
218 PSI (5 minutes of dry time) on a gravity setting. Retrieved autoclaved samples were placed back
219 in the 56 °C incubator for 24 hours to ensure dehydration. Finally, the harvested medium from
220 tips were evaluated with qRT - PCR.

223 **Ozone vapor**

224 For ozone decontamination conditions, at least 250 PPM (parts per million) * minute was set
225 for low exposure and at least 14400 PPM * minute, for high [14] exposure. An ozone
226 decontamination complex (ODC) was streamlined with an Airthereal B50 Mini ozone generator
227 (Sain Store, NV), a portable small cool mist humidifier (Geniani), and a pump (Mambate USA,
228 NY) with connecting tubing packed with Carulite 200 (Oxygen Technologies, Canada) in an
229 enclosed, plastic chamber. The ODC was kept under a fume hood to mitigate any potential
230 leakage. Respective pipettes were inoculated, cleaned, and processed accordingly; a humidifier
231 maintained 80% humidity. Samples were placed in the ODC chamber and sealed. Exposure
232 treatments were 30 minutes or 24 hours 10 PPM of ozone vapor. After exposure, the ozone
233 generator was turned off and the pump along with tubing filled with the neutralizing catalyst
234 were turned on. When the ozone level reached 10 PPM for 5 minutes, the experimental samples
235 were extracted from the chamber and incubated at 56°C overnight to ensure dehydration. Post-
236 ozone exposure, samples were tested by qPCR for residual genetic material.

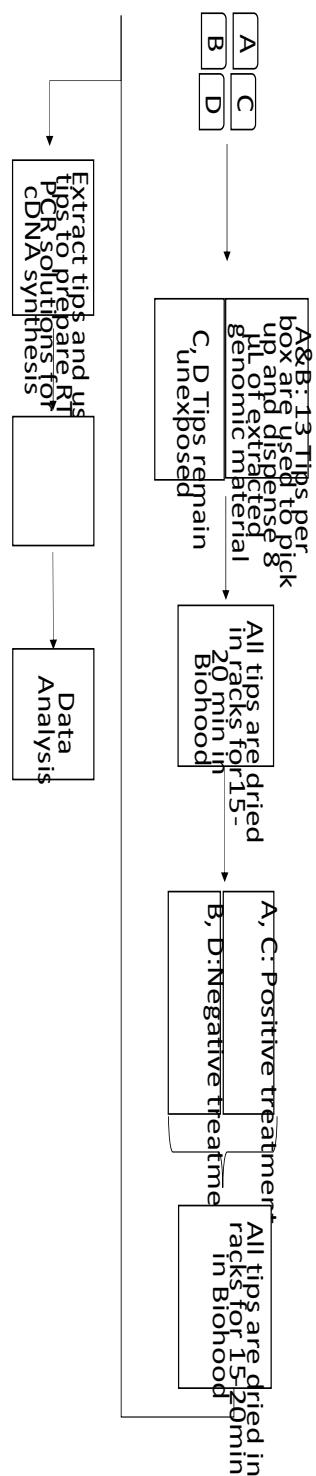
237

C


D

238 **Fig 7.** A) Top view of the ODC from left are Carulite 200 packed tubing using glass wool, ozone
239 generator, pump with tubing, and humidifier. B) Side view of the ODC. C) Side view of the ODC during
240 exposure, ozone sensor: 14.2 PPM (parts per million) D) Side view of the ODC post neutralization, ozone
241 sensor: 0.0 PPM.

242 **Cold atmospheric plasma exposure**


243 The operating parameters of CAP instrumentation was set as follows: input voltage of 25 V,
244 regulated voltage of 12 V, discharge voltage of 6.5 kV, frequency of 12.5 kHz, and helium gas
245 flowrate range of 5 LPM (liters per minute). Under a stabilized plasma jet stream, the pipette box
246 with conditioned pipette tips were placed 2 to 5 cm under the plasma jet. Parameters tested were
247 1 minute upright exposure and 1 minute inverted exposure. The treated tips were incubated at 56
248 °C overnight to ensure dehydration. Similar to other decontamination methods described,
249 following CAP treatment samples were harvested and tested by qRT - PCR.

250

251 **Fig 8.** Layout of pipette tips during CAP exposure. Plasma jet was 2 – 5 cm from the upright position or
252 tips (as shown above) or inverted (tip side closest to the jet).

Ozone / CAP Protocol

253

254 **Fig 9.** Workflow of ozone / CAP decontamination protocol.

255 **Primer design and validation**

256 The initial primer design for qRT – PCR were based [18] on the literature. The housekeeping
257 gene, 16S rRNA, was selected for *A. hydrophila*, for primer stability [16] and long half-life.
258 Primers were validated using NCBI's Primer BLAST and the Integrated DNA Technologies
259 (IDT) Oligoanalyzer tools. Criteria for primer selection included the following: specificity to
260 documented target sequences, amplicon size for qPCR analysis, juxtaposing annealing
261 temperature, and acceptable ΔG values.

262 **Table 2. Primer Validation for *A. hydrophila***

Target Gene	FP/RP	Primer Sequence (5'-3')	Primer BLAST		IDT Oligoanalyzer			Source
			Tm (°C)	GC%	Hairpin ΔG (kCal/mol)	Self-Dimer ΔG (kCal/mol)	Hetero-Dimer ΔG (kCal/mol)	
16s rRNA	FP	GC GGCGGACGGGTGAGTA	64.44	72.22	-1.58	-3.61~-0.96	-11.09~-1.6	[18]
	RP	CCCACTGCTGCCTCCGT	64.41	72.22				

263 Primer Validation: this table was organized left to right with the following categories: Target Gene,
264 Forward Primer (FP)/Reverse Primer (RP), Primer Sequence (from 5' to 3'), Melting Temperature (Tm),
265 G/C content %, Amplicon Size, Hairpin Value, Self-Dimer Value, Hetero-Dimer Value, and Literature
266 Review Citation.

267 **qRT - PCR data processing validation**

268 Based on “CDC 2019 Novel Coronavirus (nCoV) Real-Time RT-PCR Diagnostic Panel -
269 Instructions for Use”, the limit of detection for samples with 2019-nCoV_N1 initial RNA
270 concentration of $10^{0.5}$ RNA copies / μL (~ 3162 copies / mL) was reported, and a mean threshold
271 cycle value of 32 with 100% positive detection test results (20 / 20; Positive / Total). Samples
272 with 2019-nCoV_N1 initial RNA concentration of 10^0 RNA copies / μL (~ 1000 copies / mL)

273 reported the mean threshold cycle value of 32.8 with 100% positive detection test [19] results (20
274 / 20; Positive / Total). Based on these values, the threshold number of DNA copies / mL present
275 in a detectable sample was calculated with the following equation (1): (assuming 100%
276 efficiency for PCR reactions)

277
$$DetectCT = I \times 2^{C_t} \quad (1)$$

278 DetectCT = The threshold number of DNA copies / mL present in a detectable sample

279 I = Initial amount of DNA copies / mL

280 C_t = Mean threshold cycle

281 Therefore, the threshold number of DNA copies / mL present in a detectable sample was 1.358 X
282 10^{13} RNA copies / mL. (~7.478 X 10^{12} DNA copies / mL based on the second set of data.)

283 The expected mean threshold cycle for a positive sample with known initial amount of RNA is
284 calculated with the following equation (2):

285
$$C_t = \log_2\left(\frac{DetectCT}{I}\right) \quad (2)$$

286 C_t = Expected mean threshold cycle

287 Detect CT = The threshold number of DNA copies / mL present in a detectable sample

288 I = Initial amount of DNA copies / mL

289 Exposed and sterilized pipette tips that show threshold cycle value smaller than the expected
290 mean threshold cycle will be considered positive test results.

291 *Example Calculation 1*

292 Initial number of copies: 3.544×10^{11} DNA copies / mL

293 Threshold number of DNA copies / mL present in a detectable sample: 1.358×10^{13} RNA copies

294 / mL

295 Expected mean threshold cycle of a detectable sample: 5.26 cycles

296 These experimental conditions resulted in threshold cycle that were too low.

297 Example Calculation 2 (1:1000000 dilution of DNA sample)

298 Initial number of copies: 3.544×10^5 DNA copies / mL

299 Threshold number of DNA copies / mL present in a detectable sample: 1.358×10^{13} RNA copies

300 / mL

301 Expected mean threshold cycle of a detectable sample: 25.19 cycles

302 The expected threshold cycle was between 25 to 35 and therefore representative of optimal
303 assays conditions.

304 The limit of detection was updated to the experimental mean threshold cycle value of negative
305 controls (uninoculated and untreated).

306 **qRT - PCR procedures**

307 qRT – PCR was used to quantify genetic material. Methods for qRT-PCR were according to
308 manufacturer instructions: 5.0 μ L of SYBR green master mix and 1.0 μ L of primer-pairs specific
309 to housekeeping genes, which is normalized to \sim 500 nM for both forward and reverse sets.

310 Assay conditions on a BioRad CFX 96 Real-Time Thermocycler (Biorad; CA) were: heat-
311 activation 50 °C for 10 minutes, 5 minutes at 95 °C, 50 cycles of denaturation at 95 °C for 5

312 seconds and annealing/extension at 53°C for 30 seconds. This protocol was repeated at three
313 different annealing temperatures to identify optimal conditions, using BioRad CFX96. Reaction
314 efficiencies were determined by comparing the slope of the calibration curve. The non-template
315 control (NTC) threshold cycles for both reverse and forward primers were compared to
316 determine the annealing temperature and primer pairs that optimize reaction efficiency as well as
317 the quantification limit, or lower limit of quantification (LLOQ) for the assay. A C_t value that
318 was above the NTC C_t was considered indeterminate.

319 **Turnover ratio**

320 To compare different decontamination effects, turnover ratio was defined and compared as
321 follows (3):

322
$$TO = \frac{N_{Rep}}{N_{Tot}} \quad (3)$$

323 TO = Turnover ratio

324 N_{Rep} = Number of samples considered as decontaminated

325 N_{Tot} = Total sample number

326 For qRT - PCR results, decontaminated results accounted for number of samples that have mean
327 threshold cycle larger than the limit of detection.

328 **Log reduction**

329 To compare different decontamination effects, log reduction was defined as the following
330 (4):

331 $LR = \log_{10}(C_{Ino}) - \log_{10}(C_{Har})$ (4)

332 LR = Log reduction

333 C_{Ino} = Concentration of inoculated

334 C_{Har} = Concentration of harvested

335 The concentrations of genetic material were calculated from the qPCR mean threshold cycle

336 values and the following equation (5):

337
$$C_{DNA} = \frac{DetectCT}{2^{C_t}}$$

338 C_{DNA} = DNA concentration

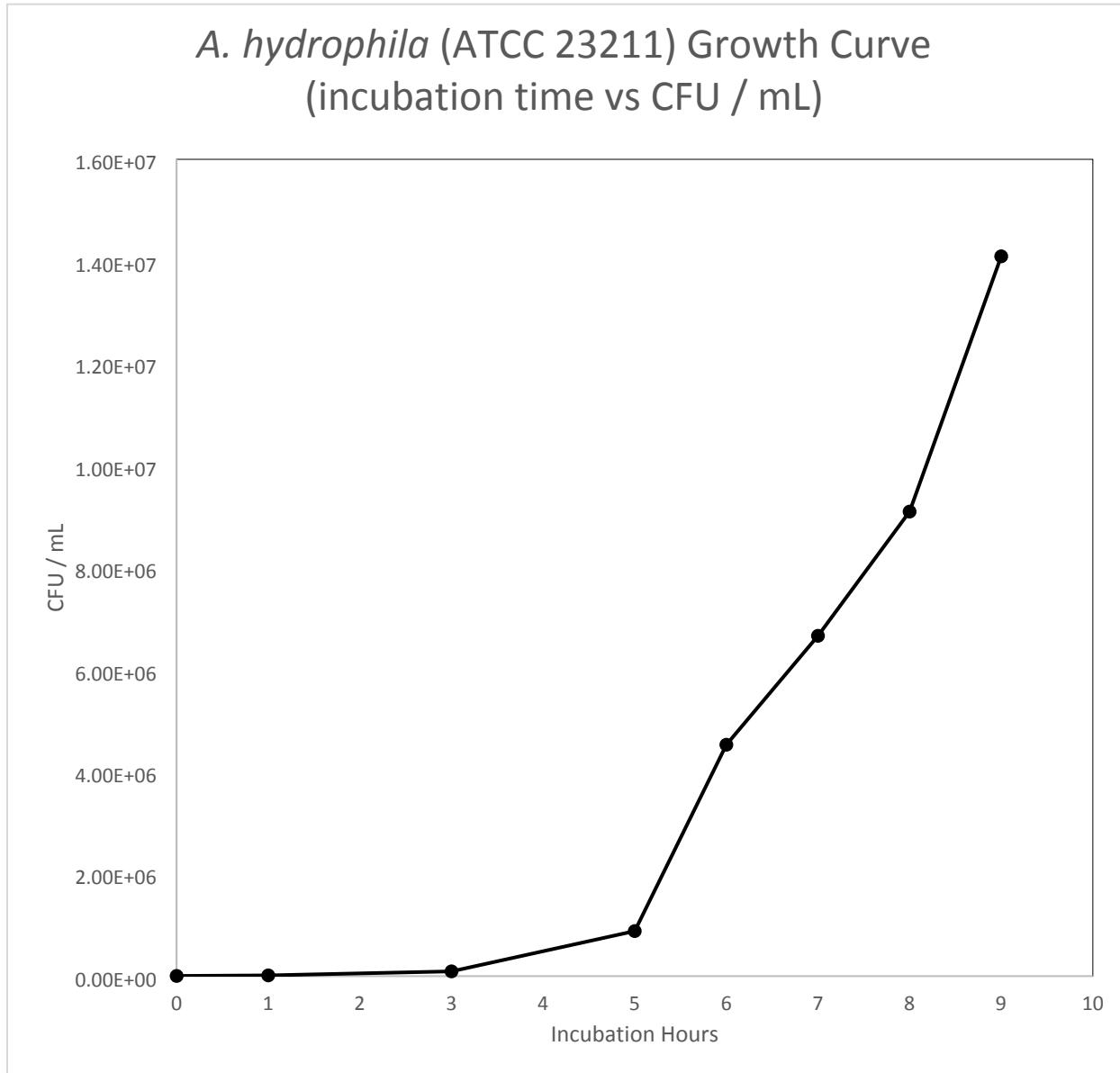
339 DetectCT = Threshold number of DNA copies / mL in a detectable sample

340 C_t = Mean threshold cycles

341 **Statistical analysis**

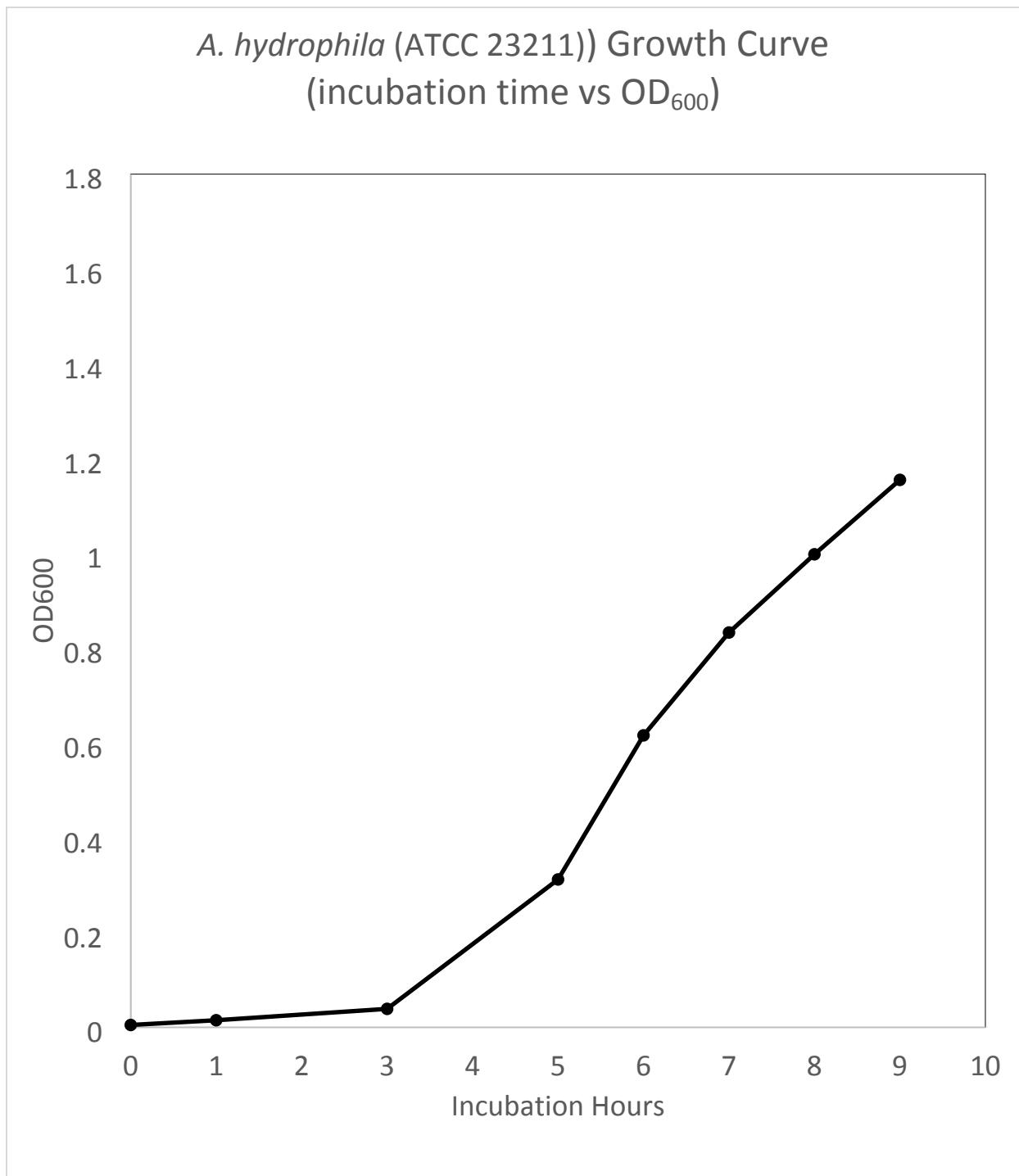
342 The log reduction for each experimental condition were analyzed using one-way ANOVA at

343 a p-value of 0.05, followed by a Tukey's post hoc test to compare the means of all experimental


344 conditions to the mean of each experimental condition. GraphPad Prism (version 9.0.0) and R

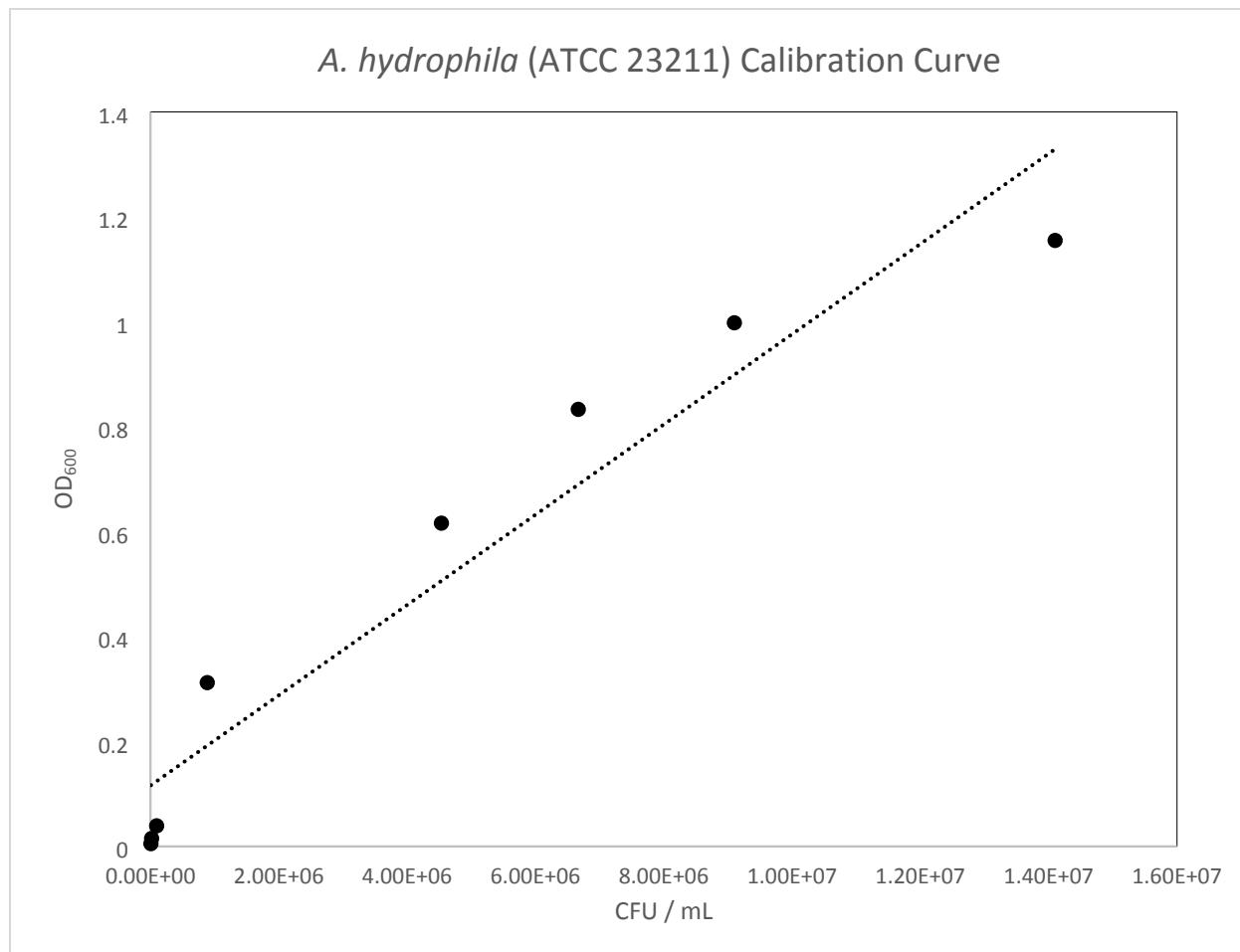
345 (version 4.2.1) were used to generate graphs and perform statistical analyses.

346 **Results**


347 **Bacterial growth calibration curve**

348 The calibration curve displayed a normal bacterial growth pattern: lag phase proceeding
349 inoculation (T0-T3), followed by a log phase of growth (T4-8), and finally a plateau (T9). The CFU/mL
350 /OD₆₀₀ displayed a linear growth progression ($R^2= 0.923$) indicative of standard bacterial growth.

351


352 **Fig 10.** Calibration curve, graphed as a function of time over CFU/mL.

353

354 **Fig 11.** Calibration curve, graphed as a function of OD₆₀₀ over time.

355

356

357 **Fig 12.** Calibration curve displaying a linear trend, plotted as a function of CFU / mL versus OD₆₀₀.

358 **DNA extraction results**

359 Seven aliquots of subculture were extracted at OD₆₀₀ of 0.823. These aliquots were
360 processed as discussed previously and the concentration was determined spectrophotometrically,
361 by Nanodrop (Thermo-Fisher Scientific, MA).

362 **Table 3. *A. hydrophila* DNA extraction results**

Sample Name	Concentration (ng/µL)	Absorbance ratio 260/280	Absorbance ratio 260/230	Absorbance 260 (nm)	Absorbance 280 (nm)
-------------	--------------------------	-----------------------------	-----------------------------	------------------------	------------------------

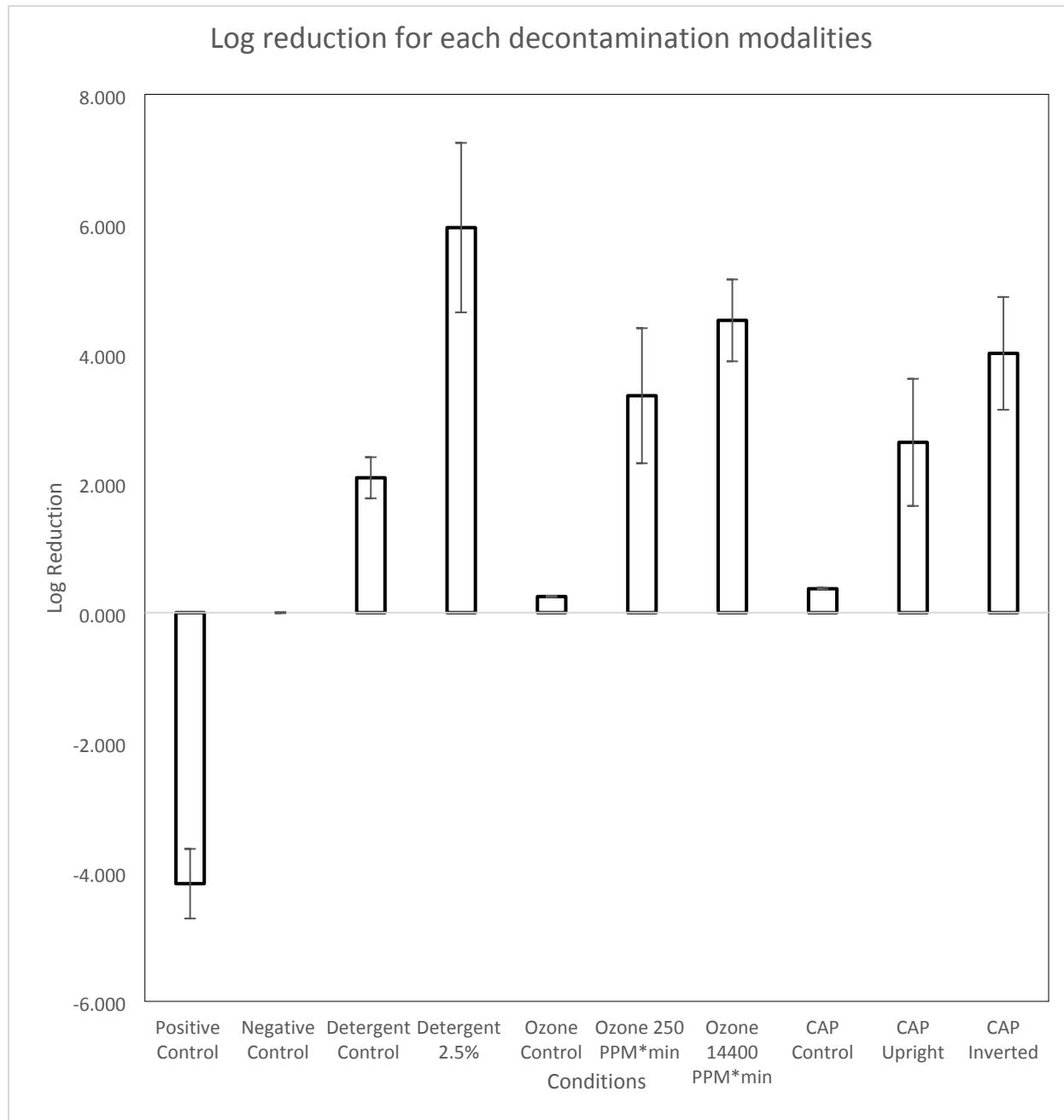
Sample 1	109.5	2.12	1.80	2.19	1.03
Sample 2	110.3	2.14	1.68	2.21	1.03
Sample 3	121.1	2.14	1.75	2.42	1.13
Sample 4	125.9	2.14	1.86	2.52	1.18
Sample 5	145.9	2.13	2.04	2.92	1.37
Sample 6	136.6	2.13	1.97	2.73	1.28

363 DNA concentrations (ng/µL) and absorbance values (nm) for extracted *A. hydrophila* aliquots.

364 **Processed qRT - PCR data**

365 Turnover ratio and log reduction were used to compare the efficacy of laboratory detergent,
366 ozone vapor, and CAP. Detergent showed the highest turnover ratio and log reduction, followed
367 by ozone vapor and CAP.

368 **Table 4. Results of qRT-PCR analysis of decontaminated pipette tips**


	Conditions									
	Positive Control	Negative Control	Detergent Control	Detergent 2.5 %	Ozone Control	Ozone 250 PPM*min	Ozone 14400 PPM*min	CAP Control	CAP Upright	CAP Inverted
Average Threshold Cycle	16.316	30.213	37.130	36.058	31.039	27.440	31.301	31.439	25.047	29.611
Cleaned Sample	0	36	71	70	58	13	62	59	9	43
Total Sample Number	63	63	73	73	63	63	63	63	63	63
Turnover Ratio	0.000	0.571	0.973	0.959	0.921	0.206	0.984	0.937	0.143	0.683
Log Reduction	-4.183	0.000	2.082	5.943	0.248	3.349	4.511	0.369	2.628	4.002

Threshold										
Cycle Standard										
Deviation	2.093	1.080	5.659	4.679	1.198	4.145	0.660	1.302	4.236	2.467
Percent Error	0.128	0.036	0.152	0.130	0.039	0.151	0.021	0.041	0.169	0.083
Error Bar (Log)	0.537	0.000	0.317	0.771	0.010	0.506	0.095	0.015	0.445	0.333
Processed Error										
Bar (Log)	0.537	0.009	0.317	1.308	0.010	1.042	0.632	0.015	0.981	0.870

369 Results of qRT-PCR Analysis Following Decontamination of Pipette Tips: this table was
370 organized left to right with the following experimental conditions: Positive Control (DNA exposure only),
371 Negative Control (clean tip), Detergent Control (clean tip exposed to Detergent only), Detergent 2.5%
372 (DNA exposed then Detergent treated), Ozone Control (clean tip exposed to Ozone only), Ozone 250
373 PPM*min and Ozone 14400 PPM*min (DNA exposed then Ozone treated accordingly), CAP Control
374 (clean tip exposed to CAP only), CAP Upright and Inverted (DNA exposed then CAP treated
375 accordingly). The rows referred to categories: average threshold cycle, cleaned sample number, total
376 sample number, turnover ratio, log reduction, threshold cycle standard deviation, percent error, processed
377 error bar (log reduction graph). * Additional samples were tested due to reaction condition variability.

378 Log reduction graph

379 This log reduction graph provided a visual representation of the log reduction values
380 extrapolated from the qRT-PCR threshold cycle results. Negative log reduction on positive
381 control signified presence of replicable genetic material when compared to negative control
382 without any genetic material. For Detergent Control, Ozone Control, and CAP Control, the
383 average concentration of negative control was the inoculated concentration. For experimental
384 groups other than Detergent Control, Ozone Control, and CAP Control, the average
385 concentration of positive control was the inoculated DNA concentration.

386

387 **Fig 13.** Log reduction (on y axis) of genomic material post decontamination compared with controls. The
388 error bars calculated based on the standard deviation of experimental groups (on x axis).

389 **Selected statistical results**

390 One-way ANOVA test indicated there was a statistically significant difference (p-value
391 < 0.001) among log reduction in Positive Control, Negative Control, Detergent 2.5 %, Detergent
392 Control, Ozone 250 PPM*min, Ozone 14400 PPM*min, Ozone Control, CAP Upright, CAP
393 Inverted, and CAP Control. Tukey's multiple comparisons of the log reduction difference
394 between all experimental conditions to every other experimental condition were calculated
395 (Table 5). Differences were considered statistically significant when p-value is <0.05 and the p-
396 value was categorized as **= p < 0.01, *** = p < 0.001, **** = p < 0.0001, and ns =
397 nonsignificant based on level of significance. Non-select statistical results can be found in
398 supplemental materials.

399 **Table 5. Selected statistical results**

Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Summary	Adjusted P Value
Negative Control vs. Detergent Control	-2.082	-2.484 to -1.680	****	<0.0001
Negative Control vs. Ozone Control	-0.248	-0.6645 to 0.1685	ns	0.6757
Negative Control vs. CAP Control	-0.369	-0.7855 to 0.04754	ns	0.1343
Detergent 2.5 % vs. Ozone 250 PPM*min	2.594	2.192 to 2.996	****	<0.0001
Detergent 2.5 % vs. Ozone 14400 PPM*min	1.432	1.030 to 1.834	****	<0.0001
Detergent 2.5 % vs. CAP Upright	3.315	2.913 to 3.717	****	<0.0001
Detergent 2.5 % vs. CAP Inverted	1.941	1.539 to 2.343	****	<0.0001
Detergent Control vs. Ozone Control	1.834	1.432 to 2.236	****	<0.0001
Detergent Control vs. CAP Control	1.713	1.311 to 2.115	****	<0.0001

Ozone 250 PPM*min vs. Ozone 14400 PPM*min	-1.162	-1.579 to -0.7455	****	<0.0001
Ozone 250 PPM*min vs. CAP Upright	0.721	0.3045 to 1.138	****	<0.0001
Ozone 250 PPM*min vs. CAP Inverted	-0.653	-1.070 to -0.2365	****	<0.0001
Ozone 14400 PPM*min vs. CAP Upright	1.883	1.466 to 2.300	****	<0.0001
Ozone 14400 PPM*min vs. CAP Inverted	0.509	0.09246 to 0.9255	**	0.0045
Ozone Control vs. CAP Control	-0.121	-0.5375 to 0.2955	ns	0.9957
CAP Upright vs. CAP Inverted	-1.374	-1.791 to -0.9575	****	<0.0001

400 Tukey's multiple comparisons of the Log Reduction difference between all experimental and

401 control conditions.

402 **Table 6. Non-select statistical results**

Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Summary	Adjusted P Value
Positive Control vs. Negative Control	-4.183	-4.600 to -3.766	****	<0.0001
Positive Control vs. Detergent 2.5 %	-10.13	-10.53 to -9.724	****	<0.0001
Positive Control vs. Detergent Control	-6.265	-6.667 to -5.863	****	<0.0001
Positive Control vs. Ozone 250 PPM*min	-7.532	-7.949 to -7.115	****	<0.0001
Positive Control vs. Ozone 14400 PPM*min	-8.694	-9.111 to -8.277	****	<0.0001
Positive Control vs. Ozone Control	-4.431	-4.848 to -4.014	****	<0.0001
Positive Control vs. CAP Upright	-6.811	-7.228 to -6.394	****	<0.0001
Positive Control vs. CAP Inverted	-8.185	-8.602 to -7.768	****	<0.0001
Positive Control vs. CAP Control	-4.552	-4.969 to -4.135	****	<0.0001
Negative Control vs. Detergent 2.5 %	-5.943	-6.345 to -5.541	****	<0.0001

Negative Control vs. Detergent Control	-2.082	-2.484 to -1.680	****	<0.0001
Negative Control vs. Ozone 250 PPM*min	-3.349	-3.766 to -2.932	****	<0.0001
Negative Control vs. Ozone 14400 PPM*min	-4.511	-4.928 to -4.094	****	<0.0001
Negative Control vs. Ozone Control	-0.248	-0.6645 to 0.1685	ns	0.6757
Negative Control vs. CAP Upright	-2.628	-3.045 to -2.211	****	<0.0001
Negative Control vs. CAP Inverted	-4.002	-4.419 to -3.585	****	<0.0001
Negative Control vs. CAP Control	-0.369	-0.7855 to 0.04754	ns	0.1343
Detergent 2.5 % vs. Detergent Control	3.861	3.474 to 4.248	****	<0.0001
Detergent 2.5 % vs. Ozone 250 PPM*min	2.594	2.192 to 2.996	****	<0.0001
Detergent 2.5 % vs. Ozone 14400 PPM*min	1.432	1.030 to 1.834	****	<0.0001
Detergent 2.5 % vs. Ozone Control	5.695	5.293 to 6.097	****	<0.0001
Detergent 2.5 % vs. CAP Upright	3.315	2.913 to 3.717	****	<0.0001
Detergent 2.5 % vs. CAP Inverted	1.941	1.539 to 2.343	****	<0.0001
Detergent 2.5 % vs. CAP Control	5.574	5.172 to 5.976	****	<0.0001
Detergent Control vs. Ozone 250 PPM*min	-1.267	-1.669 to -0.8650	****	<0.0001
Detergent Control vs. Ozone 14400 PPM*min	-2.429	-2.831 to -2.027	****	<0.0001
Detergent Control vs. Ozone Control	1.834	1.432 to 2.236	****	<0.0001
Detergent Control vs. CAP Upright	-0.546	-0.9480 to -0.1440	***	0.0008
Detergent Control vs. CAP Inverted	-1.92	-2.322 to -1.518	****	<0.0001
Detergent Control vs. CAP Control	1.713	1.311 to 2.115	****	<0.0001

Ozone 250 PPM*min vs. Ozone 14400 PPM*min	-1.162	-1.579 to -0.7455	****	<0.0001
Ozone 250 PPM*min vs. Ozone Control	3.101	2.684 to 3.518	****	<0.0001
Ozone 250 PPM*min vs. CAP Upright	0.721	0.3045 to 1.138	****	<0.0001
Ozone 250 PPM*min vs. CAP Inverted	-0.653	-1.070 to -0.2365	****	<0.0001
Ozone 250 PPM*min vs. CAP Control	2.98	2.563 to 3.397	****	<0.0001
Ozone 14400 PPM*min vs. Ozone Control	4.263	3.846 to 4.680	****	<0.0001
Ozone 14400 PPM*min vs. CAP Upright	1.883	1.466 to 2.300	****	<0.0001
Ozone 14400 PPM*min vs. CAP Inverted	0.509	0.09246 to 0.9255	**	0.0045
Ozone 14400 PPM*min vs. CAP Control	4.142	3.725 to 4.559	****	<0.0001
Ozone Control vs. CAP Upright	-2.38	-2.797 to -1.963	****	<0.0001
Ozone Control vs. CAP Inverted	-3.754	-4.171 to -3.337	****	<0.0001
Ozone Control vs. CAP Control	-0.121	-0.5375 to 0.2955	ns	0.9957
CAP Upright vs. CAP Inverted	-1.374	-1.791 to -0.9575	****	<0.0001
CAP Upright vs. CAP Control	2.259	1.842 to 2.676	****	<0.0001
CAP Inverted vs. CAP Control	3.633	3.216 to 4.050	****	<0.0001

403 Tukey's multiple comparisons of the Log Reduction difference between all experimental
404 conditions to every other experimental conditions

405 **Discussion**

406 The objective of this study was to identify decontamination methods for plasticware (pipette
407 tips) that would permit re-use, and specifically testing that may require handling genetic
408 materials. The goal was to measure residual genetic materials following decontamination and
409 provide insight into methods that may prove resourceful during emergencies (i.e.,
410 pandemic/endemic scenarios with scarcity of supplies). Compared with positive and negative

411 controls, the results demonstrated that DNA residue, following decontamination, can interfere
412 with qRT - PCR results.

413 All methods were shown to have decontamination efficacies. Lab detergent produced the
414 highest log reduction (5.943) in residual genetic material, however the excessive residue from
415 the detergent in pipette tips and inner filters could affect downstream assays. The statistically
416 significant difference in detergent controls to negative controls bolstered excessive residue on
417 qRT – PCR results. Based on these results, treatment with lab detergent was not a favorable
418 decontamination method.

419 The experimental group exposed to ozone vapor at 14400 PPM * minutes showed the second
420 highest turnover ratio (98.4 %) and log reduction (4.511). Additionally, tips exposed to CAP
421 inverted 1 minute showed the turnover ratio (68.3 %) and log reduction (4.002). Ozone vapor
422 and CAP resulted in nondestructive traits for clean pipette tips. The relatively lower turnover
423 ratio and log reduction of CAP could be attributed to the absence of streamlined exposure—the
424 availability of a gantry or similar system could optimize exposure and decontamination.
425 Therefore, CAP exposure could be optimized to develop an efficient method, as the period of
426 exposure and impact to plasticware appear are minimal compared with other decontaminations
427 methods we tested.

428 **Conclusion**

429 The study concluded that detergent, ozone vapor, and CAP showed different efficacies for
430 genetic material clearance on used pipette tips. Ozone vapor demonstrated the best clearance of
431 genetic material with minimal changes to tip integrity. The level of ozone exposure and humidity

432 should be adjusted according to its application. Optimization of CAP could provide an efficient
433 alternative given the minimal exposure time and preservation of tip integrity.

434 **Acknowledgment**

435 The authors would like to acknowledge DBCMS/OSEL/CDRH management for their
436 contributions and use of equipment/materials towards the completion of this study.

437 **Funding**

438 We would like to thank the ORISE fellowship program for supporting scholars who
439 contributed to this study and FDA Office of the Chief Scientists (OCS)/Medical Counter
440 Measures (MCMi)/OCET and FDA/OST for their funding and support of this study.

441 **Data availability**

442 The authors confirm that the data supporting the findings of this study are available within
443 the article and its supplementary materials.

444 **Disclaimer**

445 The findings and conclusions in this paper have not been formally disseminated by the Food
446 and Drug Administration and should not be construed to represent any agency determination or
447 policy. The mention of commercial products, their sources, or their use in connection with
448 material reported herein is not to be construed as either an actual or implied endorsement of such
449 products by Department of Health and Human Services.

450 **References**

451 1. Weaver, D.T., et al., *UV decontamination of personal protective equipment with idle laboratory*
452 *biosafety cabinets during the COVID-19 pandemic*. PLoS One, 2021. **16**(7): p. e0241734.

453 2. Zhang, S., et al., *UV disinfection induces a VBNC state in Escherichia coli and Pseudomonas*
454 *aeruginosa*. Environ Sci Technol, 2015. **49**(3): p. 1721-8.

455 3. Grant, K., et al., *Personal protective equipment preservation strategies in the covid-19 era: A*
456 *narrative review*. Infect Prev Pract, 2021. **3**(3): p. 100146.

457 4. Lendvay, T.S., et al., *Addressing personal protective equipment (PPE) decontamination:*
458 *Methylene blue and light inactivates severe acute respiratory coronavirus virus 2 (SARS-CoV-2)*
459 *on N95 respirators and medical masks with maintenance of integrity and fit*. Infect Control Hosp
460 Epidemiol, 2022. **43**(7): p. 876-885.

461 5. Kumkrong, P., et al., *Determination of hydrogen peroxide on N95 masks after sanitization using*
462 *a colorimetric method*. MethodsX, 2021. **8**: p. 101485.

463 6. Schwartz, A., et al., *Decontamination and Reuse of N95 Respirators with Hydrogen Peroxide*
464 *Vapor to Address Worldwide Personal Protective Equipment Shortages During the SARS-CoV-2*
465 *(COVID-19) Pandemic*. Appl Biosaf, 2020. **25**(2): p. 67-70.

466 7. Otter, J.A., et al., *The role of 'no-touch' automated room disinfection systems in infection*
467 *prevention and control*. J Hosp Infect, 2013. **83**(1): p. 1-13.

468 8. Dubuis, M.E., et al., *Ozone efficacy for the control of airborne viruses: Bacteriophage and*
469 *norovirus models*. PLoS One, 2020. **15**(4): p. e0231164.

470 9. Franke, G., et al., *An automated room disinfection system using ozone is highly active against*
471 *surrogates for SARS-CoV-2*. J Hosp Infect, 2021. **112**: p. 108-113.

472 10. Yan, D., J.H. Sherman, and M. Keidar, *Cold atmospheric plasma, a novel promising anti-cancer*
473 *treatment modality*. Oncotarget, 2017. **8**(9): p. 15977-15995.

474 11. Soni, V., et al., *In Vitro and In Vivo Enhancement of Temozolomide Effect in Human Glioblastoma*
475 *by Non-Invasive Application of Cold Atmospheric Plasma*. Cancers (Basel), 2021. **13**(17).

476 12. Soni, V., et al., *Theranostic Potential of Adaptive Cold Atmospheric Plasma with Temozolomide*
477 *to Checkmate Glioblastoma: An In Vitro Study*. Cancers (Basel), 2022. **14**(13).

478 13. Bunz, O., et al., *Cold atmospheric plasma as antiviral therapy - effect on human herpes simplex*
479 *virus type 1*. J Gen Virol, 2020. **101**(2): p. 208-215.

480 14. Donohue, M., *Ozone Decontamination of N95 Masks and Other Personal Protective Equipment*
481 *(PPE)*. May 2020: Dropbox.

482 15. Shields, J.M., M.M. Lee, and H.R. Murphy, *Use of a common laboratory glassware detergent*
483 *improves recovery of Cryptosporidium parvum and Cyclospora cayetanensis from lettuce, herbs*
484 *and raspberries*. Int J Food Microbiol, 2012. **153**(1-2): p. 123-8.

485 16. Ugarte-Torres, A., et al., *Multidrug-resistant Aeromonas hydrophila causing fatal bilateral*
486 *necrotizing fasciitis in an immunocompromised patient: a case report*. J Med Case Rep, 2018.
487 **12**(1): p. 326.

488 17. Janda, J.M. and S.L. Abbott, *The genus Aeromonas: taxonomy, pathogenicity, and infection*. Clin
489 Microbiol Rev, 2010. **23**(1): p. 35-73.

490 18. Lo, C.C., et al., *Overexpression of Resistance-Nodulation-Division Efflux Pump Genes Contributes*
491 *to Multidrug Resistance in Aeromonas hydrophila Clinical Isolates*. Microb Drug Resist, 2021.

492 19. Prevention, C.f.D.C.a., *CDC 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic*
493 *Panel in Catalog # 2019-nCoVEUA-01*, D.o.V. Diseases, Editor. 2021.

494 **Supporting Information**

495 **S1 File. Minimal Data Set for Pipette Decontamination.**